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Abstract

In this article the relations between the mathematical theory of function approximation, the maximum-
likelihood method, the measures of optimality and the identification of parameters are presented. The
estimator of the maximum likelihood for uniform noise is introduced on the basis of the generalized
Cauchy probability density function (p.d.f.). The measures of optimality based on the maximum-likelihood
method for the random variables with Gauss, Cauchy, Laplace and uniform p.d.f.s are presented. The
theoretical statements are illustrated with a numerical experiment concerning the optimal parameter
identification on the free-damped-noisy response of a single-degree-of-freedom system. The different types
of noise and the different levels of the responses’ noisiness were used.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The optimization process, in our case, the parameter identification [1,2], is always governed by
the search for an objective function, which is a mathematical means of carrying out the
optimization. The optimization is made up of the data (measurements), the model (which is fitted
to the data) and the measure that tells us how the model should be fitted to the data.
The mathematical theory of function approximation states that the condition of the optimum

approximation is the minimum distance between the function and its approximation [3]. The
measure for distance is not defined by the theory of approximation. However, the maximum-
likelihood method helps us with the optimum expression for the distance [4].
The distance between measurements, which have a random spread around the true values, and

the model is minimized by minimizing the objective function. Hence, in this case the random
variable with a certain probability density function (p.d.f.) has to be minimized. The optimal
expression for the distance can be deduced from the p.d.f. of the random variable with the help of
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the maximum-likelihood method. As a result, the objective function can be formed. The
restriction placed upon the p.d.f. by the maximum-likelihood method is that the inverse of
function’s values must exist.
This study introduces a generalized Cauchy p.d.f., which enables deduction of a maximum-

likelihood estimator for uniform noise. It also introduces a more generalized instantaneous
measure of the noise content in the signal, FSNRðtÞ; which can be used when dealing with
Gaussian and uniform noise, as well as when dealing with noise that has a symmetrical-a-stable
probability distribution.
The paper brings together some different mathematical and statistical methods in a way that is

clear and applies them to the parameter identification. It also applies some probability
distributions, e.g., symmetrical-a-stable and Cauchy, that have been used recently in statistics,
signal processing and electro-engineering fields, but much less so in papers dealing with
mechanical engineering issues.
First, a short recapitulation of the function approximation theory is presented in the theoretical

part. Then the maximum-likelihood method is summarized, and the maximum-likelihood
estimators for different probability density functions are defined. The different noise-level
measures in a signal are also presented.
Theoretical statements are clearly presented during the numerical experiment, by parameter

identification on the single-degree-of-freedom responses with different levels of noise contamina-
tion and different noise types.

2. Theory

2.1. Function approximation

Let f be defined in the interval ½a; b�CR: A real non-negative number jj f jj; called the norm, can
be assigned to each function f : jj f jj should satisfy the axioms of the norm:

ð1Þ jjf jjX0;

ð2Þ jjf jj ¼ 0 if and only if f ¼ 0 everywhere in ½a; b�;

ð3Þ jjaf jj ¼ jaj jjf jj; for all aAR;

ð4Þ jjf þ gjjp jjf jj þ jjgjj:

ð1Þ

The distance between two functions f1 and f2; defined in ½a; b�; is defined as

Rð f1; f2Þ ¼ jjf1 � f2jj; ð2Þ

which satisfies the distance axioms:

ð1Þ Rð f1; f2ÞX0;

ð2Þ Rð f1; f2Þ ¼ 0 if and only if f1ðtÞ ¼ f2ðtÞ everywhere in ½a; b�;

ð3Þ Rð f1; f2Þ ¼ Rð f2; f1Þ;

ð4Þ Rð f1; f3ÞpRð f1; f2Þ þ Rð f2; f3Þ:

ð3Þ
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Let f be a discrete function defined in the interval ½a; b�CR on a finite number of points ðti; fiÞ;
where fi ¼ f ðtiÞ: The function f is approximated with the function FAR; which is dependent on
the argument t and on M parameters, a1; a2;y; aM :

FðtÞ ¼ Fðt; a1; a2;y; aMÞ ¼ Fðt; aÞ: ð4Þ

The approximation problem can be defined as follows [3]: for the given function f in ½a; b�; find
the function F of the shape (4) that gives a minimum distance jjf � Fjj: Such an approximation
function is called the best approximation of the function f for a given set of parameters a and for
the chosen norm. Hence, the parameters a must be determined in a way that the distance between
the functions f and F is minimal.

2.2. The maximum-likelihood method

The maximum-likelihood method helps us to determine the most appropriate norm when
dealing with the approximation of a function [4]. The approximation function F is often called a
model.
Suppose—as the opposite of the approximation problem—that the N data points ðxi; yiÞ; i ¼

1;y;N; are fitted to a model that has M; MoN; adjustable parameters a1;y; aM : For a
particular set of parameters a question is raised: what is the probability that this data set could
have occurred? If the model F takes on continuous values, the probability will always be zero,
unless some fixed Df on each data point ð fi; tiÞ is considered. If the probability of obtaining the
data set is infinitesimally small, then the parameters a under consideration are unlikely to be
correct. Conversely, the data set should not be too improbable for a correct choice of parameters.
The values of the parameters a are found by a maximization of the probability of the data set.
This form of parameter estimation is the maximum-likelihood estimation.
Suppose that each data point ð fi; tiÞ has a measurement error that is independently random and

distributed with a given distribution, Eq. (5), around the model f ðtiÞ:

gðxiÞ ¼ e�rðxiÞ; ð5Þ

where xi denotes a random variable (measurement error) at data point ð fi; tiÞ: The probability P of
a given set of data is the product of the probability of each data point:

Pp
YN
i¼1

fe½�rðxiÞ�Df g; ð6Þ

where

xi ¼ fi � f ðti; aÞ: ð7Þ

Maximizing Eq. (6) is equivalent to maximizing its logarithm, or minimizing the negative of its
logarithm, Eq. (8).

C% ¼
XN

i¼1

rðxiÞ

" #
� N ln Df : ð8Þ
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Since N and Df are constants, minimizing Eq. (8) is equivalent to minimizing Eq. (9).

C ¼
XN

i¼1

rðxiÞ: ð9Þ

The function r in Eq. (9) stands for the exponent of the presumed p.d.f., Eq. (5). It can be seen
from Eqs. (5) and (9) that the inverse values of the p.d.f. must exist in the interval ð�N;þNÞ: The
function C; Eq. (9), is usually called an objective function or a merit function, or even a cost
function, of the optimization problem.

2.3. Probability distributions and the maximum-likelihood estimator

The various probability distributions were taken into account, these include: Gaussian
(normal), Laplace (double-sided exponential), Cauchy (Lorentzian), Symmetric-a-Stable and
uniform. The estimate of a random variable is denoted as a hat ð4Þ:

2.3.1. The Gaussian probability distribution

The characteristic function of the Gaussian probability distribution [5] can be written as

fðtÞ ¼ eimt�ðs2t2Þ=2; ð10Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
: The mean is denoted by m; #m ¼ ð1=NÞ

PN
i¼1 xi; and variance by s2; #s2 ¼

ð1=ðN � 1ÞÞ
PN

i¼1ðxi � #mÞ2: The p.d.f. is defined as

pðxÞ ¼
1

s
ffiffiffiffiffiffi
2p

p e�ðx�mÞ2=ð2s2Þ ð11Þ

and its exponent as

rðxÞ ¼
ðx � mÞ2

2s2
: ð12Þ

Hence, the objective function C is formed as

C ¼
XN

i¼1

rðxiÞ ¼
XN

i¼1

fi � f ðti; aÞ � m
2s2

� 	2
: ð13Þ

The denominator in Eq. (13) is constant. Hence, it does not contribute to the minimization and
can be neglected. Supposing that m ¼ 0 then a new objective function is formed, Eq. (14).

C ¼
XN

i¼1

½ fi � f ðti; aÞ�2: ð14Þ

This is the well-known least-mean-squared-error (LMSE) method, where the L2 approximation
norm is used.
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2.3.2. The Laplace probability distribution

The characteristic function of the Laplace probability distribution [5] can be written as

fðtÞ ¼
eimt

1þ Z2t2
ð15Þ

the parameter m stands for the mean, #m ¼ ð1=NÞ
PN

i¼1 xi; and Z for the spread around the mean
value, 2Z2 ¼ s2; #s2 ¼ ð1=ðN � 1ÞÞ

PN
i¼1 ðxi � #mÞ2: The p.d.f. is defined as

pðxÞ ¼
1

2Z
e�jx�mj=Z ð16Þ

and its exponent as

rðxÞ ¼
jx � mj

Z
: ð17Þ

Thus the objective function C is formed as

C ¼
XN

i¼1

rðxiÞ ¼
XN

i¼1

fi � f ðti; aÞ � m
Z










: ð18Þ

It can be seen again that the denominator in Eq. (18) is constant and because of that it can be
neglected. Supposing that m ¼ 0 then a new objective function is formed, Eq. (19).

C ¼
XN

i¼1

j fi � f ðti; aÞj: ð19Þ

In this way the least-absolute-deviation (LAD) method is formed, where the L1 approximation
norm is used.

2.3.3. The Cauchy probability distribution
The characteristic function of the Cauchy probability distribution [5] can be written as

fðtÞ ¼ eimt�gjtj: ð20Þ

The parameter m stands for the location parameter (median), and the parameter g for the
dispersion, g > 0: The p.d.f. is defined as

pðxÞ ¼
2

pb

1

1þ ð2ðx � mÞ=bÞ2
ð21Þ

where b stands for the width of the p.d.f. at its half-height and at the same time b ¼ 2g: The
dispersion g can be calculated using an algorithm (29), taking into account that from the 2nd step
one should jump directly to the 6th step of the algorithm and consider a ¼ 1:
The p.d.f. can be defined as

pðxÞ ¼ eln½ð2=ðpbÞÞð1=ð1þð2ðx�mÞ=bÞ2ÞÞ� ¼ e�ln½ðpb=2Þð1þð2ðx�mÞ=bÞ2Þ� ð22Þ

and its exponent as

rðxÞ ¼ ln
pb

2
1þ

2

b
ðx � mÞ

� �2
 !" #

ð23Þ
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and finally, the objective function C is formed as

C ¼
XN

i¼1

rðxiÞ ¼
XN

i¼1

ln
pb

2
1þ

2

b
ð fi � f ðti; aÞ � mÞ

� �2
 !" #

: ð24Þ

The fraction pb=2 does not affect the minimization and can be neglected. If the zero-location
parameter value is considered ðm ¼ 0Þ then a new objective function can be rewritten as

C ¼
XN

i¼1

ln 1þ
2

b
fi � f ðti; aÞð Þ

� �2
" #

: ð25Þ

The norm of the approximation is given by the sum of the logarithms. The minimization of the
function (25) is be denoted with the MLC (the maximum-likelihood estimator for the Cauchy
probability distribution).

2.3.4. The symmetrical-a-stable probability distribution
The characteristic function of the symmetric-a-stable (SaS) probability distribution [6,7] can be

written as

fðtÞ ¼ eimt�gjtja ; ð26Þ

where m denotes the location parameter (median), g stands for the dispersion, g > 0; and a is the
characteristic exponent, 0oap2: In the case of a ¼ 2; the distribution is Gaussian. If a ¼ 1; then
it is the Cauchy probability distribution. There exists no closed form for p.d.f.s, apart from the
values of a ¼ 1 and a ¼ 2 [6].
If X is an a-stable random variable and if 0oao2; then

EfjX jpg ¼ N; pXa;

EfjX jpgoN; 0ppoa
ð27Þ

and if a ¼ 2; then

EfjX jpgoN; pX0; ð28Þ

where pAR; Ef�g is the mathematical expectation. Hence for 0oap1; symmetric-a-stable
distributions have no finite first- or higher-order moments; for 1oao2 they have finite first order
moments and all of the fractional moments of order p; where poa; for a ¼ 2; all moments exist. In
particular, all non-Gaussian SaS distributions have infinite variance [6].
The parameters g (dispersion) and a (characteristic exponent) of a symmetric-a-stable random

variable X can be computed with the following algorithm [7]:

Step 1 yi ¼ lnðjXijÞ;

Step 2
my ¼ ð1=NÞ

XN

i¼1

yi;
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Step 3
s2y ¼ ð1=ðN � 1ÞÞ

XN

i¼1

ðyi � myÞ
2;

Step 4
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6=p2Þs2y � 0:5

q
;

Step 5 Ce ¼ 0:57721y; Euler constant;

Step 6 g ¼ emy�Ceð1=a�1Þa: ð29Þ

For Gaussian processes, the most commonly used criterion for the best estimate is the LMSE
criterion. With this criterion the best estimate is the one that minimizes the variance of the
estimation error. If the process is Gaussian, it can be shown that this criterion also minimizes the
probability of large estimation errors. For SaS processes with ao2; the LMSE criterion is no
longer appropriate, due to the lack of finite variance. But the concept of the LMSE criterion can
be easily generalized to stable processes. The minimum dispersion (MD) criterion is used. Under
the MD criterion, the best estimate of a SaS random variable is the one that minimizes the
dispersion of the estimation error. The dispersion of the a stable random variable plays an
analogous role of variance. It can be shown that minimizing the dispersion is also equivalent to
minimizing the probability of large estimation errors. For more detailed information the reader
should refer to [6].
One can obtain an object function applying the minimal dispersion method, Eq. (30).

C ¼
XN

i¼1

j fi � f ðti; aÞj
p; poa: ð30Þ

This is the least-mean P-norm (LPN) method. If p ¼ 1; this is the LAD method, and if p ¼ 2; this
is the LMSE method.

2.3.5. The uniform probability distribution
The characteristic function of the uniform probability distribution in the interval ½a0; a1� can be

written [5] as

fðtÞ ¼
2

ða1 � a0Þt
sin 1

2
ða1 � a0Þ teiða0þa1Þt=2

h i
: ð31Þ

The p.d.f. is defined as

puðxÞ ¼

1

a1 � a0
; xAða0; a1Þ;

0; xeða0; a1Þ:

8<
: ð32Þ
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The p.d.f. with zero mean and with a width at half-height equal to b is redefined as

pcðxÞ ¼

1

b
; xA �

b

2
;
b

2

� �
;

0; xe �
b

2
;
b

2

� �
:

8>>><
>>>:

ð33Þ

This can be shown to have a zero first moment, m ¼ 0; and a variance of s2 ¼ b2=12:
There is a problem with the pcðxÞ p.d.f. when constructing the maximum-likelihood estimator.

The inverse values of the function pcðxÞ does not exist outside the interval ð�b=2; b=2Þ:
As a result, it is necessary to find a function that would approximately represent the uniform

p.d.f., Eq. (33), and for which the inverse function’s values exist in the interval ð�N;þNÞ: The
generalized Cauchy p.d.f. is introduced for this purpose; it leads to the function (33), if subjected
to the limit process limn-N:
The generalized Cauchy p.d.f. with zero mean (location parameter) of the random variable x is

defined as

pðxÞ ¼
2n sinðp=ð2nÞÞ

pb

1

1þ ð2x=bÞ2n
; nX1; ð34Þ

where n denotes an integer exponent greater than 0, and b is the width of the function at its half-
height. Some important properties of (34) are as follows:

ð1Þ P ¼
RþN

�N
pðxÞ dx ¼ 1;

ð2Þ m1 ¼ m ¼
RþN

�N
xpðxÞ dx ¼

N; n ¼ 1;

0; n > 1;

(

ð3Þ m2 ¼ s2 ¼
RþN

�N
x2pðxÞ dx ¼

N; n ¼ 1;

b2

4þ 8 cos ðp=nÞ
; n > 1;

8><
>:

ð4Þ limn-N m2 ¼ b2=12 ¼ s2pc
;

ð5Þ limn-N pð0Þ ¼ 1=b ¼ pcð0Þ;

ð35Þ

where P denotes probability, m1 ¼ m denotes the first moment (mean), m2 denotes the second
moment and s2 denotes the second central moment (variance). Graphs of the function pðxÞ;
Eq. (34), at b ¼ 1 and n ¼ 1; 2, 3, 4, 10 and 50 are shown in Fig. 1.
The generalized Cauchy p.d.f., as well as the Cauchy p.d.f., can also be written as

pðxÞ ¼ eln ð2n sinðp=ð2nÞÞ=ðpbÞÞ ð1=ð1þð2ðx�mÞ=bÞ2nÞÞ½ � ¼ e�ln ðpb=ð2n sinðp=ð2nÞÞÞÞð1þð2ðx�mÞ=bÞ2nÞ½ �; nX1; ð36Þ

where m denotes the mean, #m ¼ ð1=NÞ
PN

i¼1 xi; if n > 1; and the location parameter if n ¼ 1:
The parameter b stands for the spread around m; b2 ¼ s2ð4þ 8 cosðp=nÞÞ and #s2 ¼
ð1=ðN � 1ÞÞ

PN
i¼1 ðxi � #mÞ2; if n > 1 and b ¼ 2g if n ¼ 1: The exponent of the p.d.f. can be

written as

rðxÞ ¼ ln
pb

2n sinðp=ð2nÞÞ
ð1þ ð2ðx � mÞ=bÞ2nÞ

� 	
; nX1 ð37Þ
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and thus the objective function C is formed as

C ¼
XN

i¼1

rðziÞ ¼
XN

i¼1

ln
pb

2n sinðp=ð2nÞÞ
ð1þ ð2ð fi � f ðti; aÞ � mÞ=bÞ2nÞ

� 	
; nX1: ð38Þ

The fraction pb=½2n sinðp=ð2nÞÞ� does not affect the minimization and can be neglected. If the zero
mean (location parameter) value is considered ðm ¼ 0Þ then a new objective function can be
rewritten as

C ¼
XN

i¼1

ln 1þ ð2ð fi � f ðti; aÞÞ=bÞ2n
� �

; nX1: ð39Þ

The norm of the approximation is given by the sum of the logarithms. The minimization of the
function (39) is denoted by MLU (the maximum-likelihood estimator for the uniform probability
distribution). If n ¼ 1 then the MLU becomes the MLC.

2.4. Measures for the noise level in a signal

A popular measure for the noise level in a signal is the signal-to-noise ratio ðSNRÞ [1], which is
defined as the power of the signal to the power of the noise in dB.

SNR ¼ 10 log
Efs2g
Efe2g

E10 log
varðsÞ
varðeÞ

; ð40Þ

where Ef�g stands for the mathematical expectation, s for signal (noise free) and e for noise. There
is a different measure for asymptotical signals, like the response of the single-degree-of-freedom
linear system, Fig. 2, called the instantaneous signal-to-noise ratio SNRðtÞ [8], Eq. (41):

SNRðtÞ ¼ 10 log
X 2

0 e
�2doot

2 varðeÞ
; ð41Þ

where X0 stands for the initial amplitude, d for the viscous damping ratio and oo for the natural
frequency of the undamped system.
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Fig. 1. Plots of the generalized Cauchy function for b ¼ 1 and n ¼ 1; 2, 3, 4, 10 and 50, Eq. (34).
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There exists no second order moment for the SaS probability distribution. Hence, the
definitions of the measures of the noise level in a signal, Eqs. (40) and (41), are no longer
satisfactory.
Different measures should be used in the case of SaS probability distributions. In [9] the

fractional-order signal-to-noise ratio ðFSNRÞ is proposed, which is defined as the ratio of the
pth-order moments of the signal and the noise, where 0opoa; Eq. (42).

FSNR ¼ 10 log
Efjsjpg
Efjejpg

; 0opoap2; pAR: ð42Þ

The approximate comparison between SNR and FSNR is presented in Table 1.
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Fig. 2. System’s response: (a) without added noise, (b) added Gaussian noise FSNR ¼ 10 dB; (c) added Gaussian noise

FSNR ¼ 0 dB and (d) added Gaussian noise FSNR ¼ �5 dB:

Table 1

The comparison between SNR and FSNR

p ¼ 0:5 0.9 1.0 1.5 2.0

FSNR ESNR

�5 �20 �11 �10 �7 �5

0 0 0 0 0 0

5 20 11 10 7 5

10 40 22 20 13 10

20 80 44 40 27 20
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A different noise-content measure for the asymptotical signals, like those in Fig. 2, called the
instantaneous fractional-order signal-to-noise ratio FSNRðtÞ; Eq. (45), which is similar to the
SNRðtÞ proposed in [8], but is also suitable for noise with a SaS probability distribution, is
proposed. The fractional-order moment Efjsjpg for a linear single-degree-of-freedom system,
Eq. (46), can be computed analytically. The zero phase can be taken into account, j ¼ 0; in
Eq. (46) without any loss of generality and the fractional-order moment can be written as

Efjsjpg ¼ EfjX sinoodtjpg ¼ X pCðpÞ; 0pp; pAR; ð43Þ

where X denotes the slowly varying amplitude of the asymptotical signal, ood stands for the
frequency of the response and CðpÞ is the function dependent on the exponent p; Eq. (44), and is
shown in Fig. 3.

Cð pÞ ¼
1ffiffiffi
p

p Gðð1þ pÞ=2Þ
Gð1þ p=2Þ

; ð44Þ

where Gð�Þ stands for the gamma function. Thus, the FSNRðtÞ for a linear single-degree-of-
freedom system can be written as

FSNRðtÞ ¼ 10 log CðpÞ
X

p
0 e

�pdoot

Efjejpg

� �
; 0opoap2; pAR; ð45Þ

where X0 denotes the initial amplitude, d stands for the viscous damping ratio and oo is the
natural frequency.
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The measures FSNR and FSNRðtÞ are suitable for signals with SaS-distributed noise as well as
those with Gaussian and uniform noise. Both measures, FSNR and FSNRðtÞ; broaden the
applicability of the SNR and the SNRðtÞ:

3. Numerical experiment

The numerical experiment was carried out using the linear single-degree-of-freedom system’s
response, Eq. (46):

xðtÞ ¼ e�doot½A cosðoodtÞ þ B sinðoodtÞ� ¼ e�doot½X0 sinðoodt � jÞ�; ð46Þ

where d stands for the viscous damping ratio, oo for the natural frequency, ood for the damped
natural frequency, A and B are constants dependent on the initial conditions, X0 stands for the
initial amplitude and j for the phase. Eq. (46) is rewritten as

xðtÞ ¼ e�Ct½A cosðDtÞ þ B sinðDtÞ�; ð47Þ

which is more convenient for the parameter-identification procedure. The true values of the
parameters are: A ¼ 1; B ¼ �1; C ¼ 0:1 and D ¼ 0:99499:
The FSNR is used as the signal’s noise-content measure, because the comparison between the

different methods of parameter identification is easier.

3.1. The appropriateness of the multidimensional function minimization algorithms

It was observed that the objective functions deduced with the help of the maximum-likelihood
method are structured differently. Due to the heterogeneous structures of the objective functions,
two algorithms of the gradient methods [4] (a numerically estimated gradient and an analytically
computed one) and the downhill-simplex algorithm [4] (simplex [10]) were tested.
The focus was on the robustness on the initial guess of the model’s parameters. It was found

that the gradient methods converged only if the initial guess was near to the true values of the
parameters, meaning that the methods are only successful when starting in the proximity of the
minimum. In contrast, the downhill-simplex method searches for the minimum with a
perseverance and speed that could not be matched by the gradient methods in these cases. This
is consistent with the guidelines in Ref. [4].
Figs. 4 and 5 show the success of the downhill-simplex algorithm on a wide range of the initial

values, Ao and Bo; of the parameters A and B: These values are proportional to the initial
displacement and velocity, respectively. The convergence of the downhill-simplex method, when
the initial values of the parameters C and D are taken as Co ¼ 0 and Do ¼ 0; which implies no
additional effort to improve the initial values of parameters C and D; are presented in Fig. 4. The
convergence of the downhill-simplex method is shown in Fig. 5, with the initial values of the
parameters of Co ¼ 0:01 and Do ¼ 1 implying better initial values of the parameters. The value of
Do can be estimated from the power spectrum of the response and the value of Co can be
estimated, or at least the sign of the parameter C can be estimated, from the response, Fig. 2a. A
small positive number for Co; Co ¼ 0:01 was taken into account.
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3.2. Noise in the system’s responses

The three different types of noise—uniform, Gaussian and Cauchy—were added with different
levels of noise contamination measured with the FSNR; Eq. (42), to the system’s responses. Each
noise is made up of 1000 discrete data points as well as the responses.
The normalized noises and their histograms are presented in Fig. 6. The noises are normalized

in a way that the maximum absolute value is set to unity. Each histogram consists of 50 bins. It is
evident that the histograms only approximately correspond to their theoretical probability
distributions. This is mainly due to the fact that the noise is of very limited length and the
theoretical probability density functions are defined on an infinite number of data. Nevertheless,
the differences in the different noises are visible in the time domain and in the histograms, Fig. 6.
Fig. 2 shows the system’s response, to which the Gaussian noise of different levels is added. The

response is dominant at FSNR ¼ 10 dB; but at FSNR ¼ 0 dB and FSNR ¼ �5 dB the response is
hidden by the noise.
The instantaneous fractional-order signal-to-noise ratio FSNRðtÞ as shown in Fig. 7, where

FSNR ¼ 0 dB; can be used as a measure of the useful portion of the signal on which it is
reasonable to perform the parameter identification, just like the SNRðtÞ in Ref. [8]. The first 12 s
would have been the best choice in our case, but the use of the FSNR measure on the whole
response for the sake of an easy comparison of the different methods was preferred.
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3.3. Parameter identification on the responses with added uniform noise

The empirical analysis of the best choice of the generalized Cauchy p.d.f. exponent n is given in
Table 2. A value for n between 3 and 5 is estimated as the best choice.
The parameter-identification results of the different methods are presented in Table 3 with

abbreviations:

* LMSE—least-mean-squared-error method, Eq. (14);
* LAD—least-absolute-deviation method, Eq. (19);
* LPN—least-mean P-norm method (minimum dispersion method), Eq. (30);
* MLC—maximum-likelihood estimator for the Cauchy probability distribution, Eq. (25);
* MLU—maximum-likelihood estimator for the uniform probability distribution, Eq. (39);

It can be seen from Table 3 that the MLU method, which is theoretically best suited for the
optimum parameter identification in presence of the uniform noise, is the most successful one,
particularly at higher noise levels. It can also be seen that the LMSE and MLC methods produce
the same results, which are better than the results obtained with the LAD and LPN methods.
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Fig. 7. The system’s response with added Gaussian noise of FSNR ¼ 0 dB and FSNRðtÞ as function of time.

Table 2

Estimated values of the parameters with MLU method at different exponents n of the generalized Cauchy function and

at uniform noise added to the response

FSNR ðdBÞ Parameter Value n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6

0 A 1.0000 0.9681 0.9881 0.9988 1.0167 1.0371

B �1.0000 �1.0213 �1.0218 �1.0218 �1.0056 �0.7102

C 0.1000 0.0958 0.0974 0.0985 0.0983 0.1315

D 0.9950 0.9915 0.9926 0.9933 0.9942 1.0510

M. Boltemar, N. Jak$si!c / Journal of Sound and Vibration 275 (2004) 331–349 345



3.4. Parameter identification on the responses with added Gaussian noise

The results of the parameter identification on the responses with added Gaussian noise are
presented in Table 4. The MLU method did badly in this case. The best results were obtained with
the LMSE method, which is also the optimal one, in theory. The same results were obtained with
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Table 3

Estimated parameter values at different uniform noise levels obtained with different methods

FSNR (dB) Parameter Value Method

LMSE LAD LPNp¼0:9 MLC MLUn¼4

10 A 1.0000 0.9917 0.9817 0.9808 0.9917 0.9998

B �1.0000 �1.0018 �0.9976 �0.9965 �1.0018 �1.0022

C 0.1000 0.0992 0.0983 0.0983 0.0992 0.0998

D 0.9950 0.9943 0.9935 0.9934 0.9943 0.9948

0 A 1.0000 0.9171 0.8224 0.8172 0.9171 0.9988

B �1.0000 �1.0173 �1.0296 �0.9762 �1.0173 �1.0215

C 0.1000 0.0920 0.0878 0.0855 0.0920 0.0985

D 0.9950 0.9884 0.9775 0.9778 0.9884 0.9933

�10 A 1.0000 0.2943 �0.2853 �0.2686 0.2943 0.9695

B �1.0000 �1.1347 �1.1622 �1.1119 �1.1347 �1.1855

C 0.1000 0.0424 0.0272 0.0202 0.0424 0.0836

D 0.9950 0.9422 0.8961 0.8905 0.9422 0.9808

Table 4

Estimated parameter values at different Gaussian noise levels obtained with different methods

FSNR (dB) Parameter Value Method

LMSE LAD LPNp¼0:9 MLC MLUn¼4

10 A 1.0000 1.0025 1.0007 1.0012 1.0025 1.0271

B �1.0000 �1.0020 �1.0092 �1.0124 �1.0020 �1.0162

C 0.1000 0.1010 0.1016 0.1017 0.1010 0.1042

D 0.9950 0.9951 0.9943 0.9939 0.9951 0.9947

0 A 1.0000 1.0240 1.0131 1.0161 1.0240 1.2662

B �1.0000 �1.0175 �1.1299 �1.1523 �1.0175 �1.1705

C 0.1000 0.1103 0.1180 0.1179 0.1103 0.1406

D 0.9950 0.9967 0.9841 0.9795 0.9967 0.9875

�5 A 1.0000 1.0603 0.9341 0.9341 1.0603 1.5799

B �1.0000 �1.0270 �1.4898 �1.5249 �1.0270 �1.5119

C 0.1000 0.1298 0.1511 0.1493 0.1298 0.1828

D 0.9950 1.0027 0.9290 0.9276 1.0027 0.9324

M. Boltemar, N. Jak$si!c / Journal of Sound and Vibration 275 (2004) 331–349346



the MLC method. The results of the LMSE, LAD and LPN methods are comparable for lower
noise levels ðFSNRX0 dBÞ; because the finite length of noise means that the histogram of the
Gaussian noise, Fig. 6, is only nearly Gaussian. The other reason is that the shapes of the p.d.f.s of
the methods, Fig. 8, are similar to the histogram’s shape.
The marks in Fig. 8 stand for

a- Cauchy p.d.f., Eq. (21) considering m ¼ 0 and b ¼ 1;
b- Laplace p.d.f., Eq. (16) considering m ¼ 0 and Z ¼ 1;
c- Gaussian p.d.f., Eq. (11) considering m ¼ 0 and s ¼ 1 and
d- Generalized Cauchy p.d.f., Eq. (34) considering m ¼ 0; b ¼ 1 and n ¼ 4:

3.5. Parameter identification on the responses with added Cauchy noise

The results of the parameter identification on the responses with added Cauchy noise are presented
in Table 5. As expected, the best results were obtained with the MLC method. The results of the
LMSE and MLC methods were not the same as they were for the responses with added uniform or
Gaussian noise. The LPN method, originating from the minimum dispersion method of the
symmetrical-a-stable distribution [6], is theoretically also suitable for the task. The results in Table 5
indicate that the MLC method is only slightly better than the LPN method. The results of the latter
are comparable to the results of the LAD method, even though it is theoretically unsuitable for
optimum parameter identification. The reason for the success of the LAD method lies in the finite
length of the noise (only 1000 data points), which prevents us from reaching the theoretical Cauchy
probability distribution, Fig. 6. The value a of the Cauchy noise, which should have been 1, was
estimated using algorithm (29). The estimated value of a is slightly greater than 1, which is the
consequence of the finite data length and according to Eq. (30) the LAD should be successful.

4. Conclusions

The mathematical theory of the function approximation, the maximum-likelihood method, the
measures of optimality and the parameter identification were brought together and presented in
this article.
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The probability density function (p.d.f.) of the uniform probability distribution is lacking its
inverse function’s values throughout in the interval ð�N;þNÞ: The maximum-likelihood estimator
for the p.d.f. of the uniform probability distribution is introduced on the basis of the generalized
Cauchy p.d.f. It was shown that the generalized Cauchy function becomes the p.d.f. of the uniform
probability distribution if subjected to the limitation process of limn-þN: Its advantages were
empirically shown against all the other optimality measures presented in this paper.
It was shown that it is possible to generalize the measure of the instant noise level SNRðtÞ to the

FSNRðtÞ; which can be additionally used with symmetrical-a-stabile distributed noise.
The roots of the well-known measure of optimality, the least-mean-squared errors, are

presented in this paper, as well as its optimality restricted only to Gaussian noise.
Parameter identification while different types of noise (uniform, Gaussian and Cauchy) were

added to the response was used as an example of an optimization problem. It was shown that each
type of the noise has its own maximum-likelihood estimator.
It was found out that the maximum-likelihood estimator based on the Cauchy p.d.f. (MLC)

gives the same results as least-mean-squared-errors (LMSE) method, when taking into account
the responses with added Gaussian and uniform noise. When dealing with Cauchy noise, the
MLC method was better than the LMSE method.
The differences between the results of the maximum-likelihood estimators are small if the noise

level is low ðFSNR > 10Þ: The optimality of the different estimators becomes important if the noise
level is higher.
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